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Optimal Source Distribution for Hyperthermia
at the Center of a Sphere of Muscle Tissue
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Abstract —In noninvasive electromagnetic hyperthermia it is important
that applicators deposit as least as much power at the tumor as anywhere
else in the intervening tissue. This study determines the ideal penetration
limits for heating the center of a volume of muscle tissue according to this
constraint. First, it is shown that the most efficiently heated volume is a
sphere. Then, using both a diffraction integral formulation and a spherical
harmonic modal approach, field distributions within the sphere are derived.
It is shovn that combining odd harmonics can generate a nearly uniform
surface power distribution, and that this distribution is optimal. The power
" deposition patterns for these distributions for various standard frequencies
are presented. It is concluded that 915 MHz is the best frequency for
heating spheres less than 9.5 cm in radius.

I. INTRODUCTION

HE USE OF microwaves to induce hyperthermia by

depositing power within biological tissue is an effec-
tive means of treating cancer [1]-[3]. Applied noninva-
sively, microwave radiation is relatively safe and control-
lable, and may be synergistically combined with ionizing
radiation or chemotherapy.

It is important to know the penetration depth limits
which produce local power maxima. For treatment which
provides heat at depth at the site of a localized, solid
tumor, overheating normal intervening tissue must be
avoided. The greatest depth for which power can be safely
deposited occurs in a spherical volume of tissue. Also, with
proper focusing, this penetration depth represents a
fundamental heating limit.

In contrast to several previously reported studies, the
current examination considers the synthesis of the particu-
lar best distribution. A large amount of work has been
done analyzing the power pattern in a sphere illuminated
by a plane wave [4]-[6]. For this scattering problem, the
deposition pattern is unsymmetrical, since power is inci-
dent from only one side. Placing sources on all sides—in
effect surrounding the sphere with sources—makes use of
the entire apperture and therefore provides the greatest
constructive interference at the center. The symmetric
distribution synthesized has a much greater focal-point-
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to-surface distance than the plane wave pattern. The
optimal synthesis problem, though conceptually more
complex, is less computationally difficult than the plane
wave scattering analysis, which is usually solved using
numerical approximations. Since the former specifies a
source polarization, phase, and amplitude distribution on
the sphere surface, it is not easily analyzed using ray paths
or wavefronts. However, since the solution is ultimately
determined in terms of spherical harmonics, it is specified
in closed form.

There are relatively few biological structures which can
be modeled by the spherical geometry. The head (with
adequate eye protection) and the breast, making use of the
higher conductivity muscle “ground plane” backing layer,
are possible candidates. Despite the limited applications,
however, knowledge of the absolute maximum heating
depth provides a rule of thumb which specific microwave
applicator designs might strive to approach, but never
exceed.

II. Lossy SPHERE FIELD SOLUTIONS

Since attenuation in dissipative media is roughly
exponential with depth, the volume geometry most suitable
for maximum constructive interference is one which
minimizes the distance from a focal point to the source on
its surface. By this criterion a sphere is optimum, since any
other volume can always be inscribed by a sphere. Thus,
given the minimum focal-point-to-surface distance R, and
the maximum tolerable surface power, a sphere of radius
R will yield the greatest power maximum at that focal
point, the origin.

The polarization of the source on the surface of the
sphere is an important criterion. As shown in Fig. 1, it
must be parallel to some axis, say the z axis. By symmetry,
these z-directed source components are independent of
circulating angle (¢), and have polar angle () dependence
which is symmetric about the equator (0 = #/2). Any
additional radially symmetric (#) polarization component
cancels itself at the center, whereas any circulating compo-
nent vanishes there, and any additional polar angle com-
ponent can be decomposed into a radial component and a
z-directed component. If possible, a source design should
maintain polarization parallel to the z axis.

Specifying the optimal phases and amplitudes of these
source components is the next step in this derivation.
Contrary to established intuition, the best focused source
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Fig. 1. Currents polarized in the z direction on the surface of a sphere,
and the resulting maximum constructive interference of electric field at
the center.

distribution is not uniform amplitude and phase, as it
would be for an acoustic compression wave. To examine
the deficiencies of this uniform distribution, we first solve
the surface current diffraction integral, and then improve
this solution using a modal analysis to yield the optimum
distribution. .

The uniform z-polarized surface current at a radius R is
represented as J(r’)=0(r — R)Z., where & is the spatial
impulse function. This current is inserted in the dyadic
Green’s function diffraction formula [7]

(1)

= 1
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where the left-hand side of (1) is the vector electric field at
the observer point r, A(r) is the vector potential, w is the
radian frequency, I is the dyadic identity, k =8 — ja is
the complex wavenumber, and |r— r’| is the observer-to-
integration-point distance. The law of cosines is vused to
represent |r — #’|, where r is assumed to lie on the z axis.
This alignment assumption is justified since the source is
uniform and symmetric and the only requirement on
po]arlzatlon is that it be parallel to any arbitrary axis. That
is, the vector potential A is independent of observer coor-
dinates 8 and ¢. As would be the case with a scalar wave,
A represents a family of concentric, spherical equipoten-
tials. The source polarization enters only as a linear multi-
plier to this scalar function. The integral in (2) becomes a
surface integral;
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which is readily integrated, giving
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Inside the sphere, r <R, the vector potential can be
represented by a spherical Bessel function:

sin kr
kr

Jo(ker ). (5)

It is at this point that the vector nature of the electromag—
netic field presents itself. Substituting this expression back
into (1) and taking derivatives in cylmdrlcal coordinates

(p9 ¢, /) glVCS
j1(k’))

E(z,p) =~ jque"kR<5[(§)2(fo(k’)" ker
6
5[ 2] i +3242]
(6)

A(r) =tuRe /%R
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with r =yz%+ ;)—2-

Several features of (6) are worth mentioning. First, there
is the addition of the § component, and the Z component
has three terms instead of just one (as might be expected
for a scalar field). Second, for small values of radius, since
Jo(kr)y~1 and j(kr) ~ kr/3, the electric field reduces to
simply

E(z,p) = —§upRe**(3)
~8(— j2)nkRe /*R, (7)
Next, for large values of radius | j,(kr)| ~ [sin(kr + %) /kr],
so (6) becomes

E(z,p) = = jukRe ¥y (k)= (25> ). ()

Note that in (8) there is an appreciable E, component
away from the equator. Thus even though the surface
currents are polarized parallel to the z axis, it is recognized
that the resulting E field for large radii is primarily
polarized in the # direction.

The dissipated power in a medium of conductivity o is
g E|% From (8), this is seen to be

per) = T (2] )

which is maximized at z=0, p=r, at the equator. The
exact power deposition function, based on (6) normalized
to the power at the origin, is plotted as a function of radius
at z=0 in Fig. 2 for several standard microwave
hyperthermia frequencies [8]. It is the intersection of each
curve with unity which determines the maximum allowable
sphere radius. As would be expected, the lowest frequency
curve has a greater penetration depth, due to its larger
physical wavelength, whereas the higher frequency patterns
have much greater resolution, with a rather narrow peak at
the origin for 2450 MHz. An interesting anomaly exists for
915 MHz, where the penetration depth is actually greater
than 433 MHz. This is due to the more prominent



1324
2450 433 915 100 MHz
Lsp
.
¢ 1o
o
o
o
>
2z
=
[ L
2 s
d.e L — S R 1 1
] 2 N & 8 19 12 1
Radius (Centimeters)
Fig. 2 Daissipated power in a sphere of muscle tissue as a function of

radius at 8 = /2 {or four standard hyperthermia frequencies: uniform
current distribution

A’

Fig. 3. Power contours within a sphere of muscle tissue illuminated
with a uniform phase and amplitude, vertically polarized current source.

constructive and destructive phase effects for the higher
frequency.

Fig. 3 schematically represents the power contours within
the sphere. The profile of Fig. 2 is plotted along the
horizontal radial line from the center.

For a given (large) radius, (9) shows that the power
varies as sin?@. This is the same angular dependence as the
far-field power flow of a Hertzian dipole, resulting from
the sind factor in the transverse component of the E field
and the H field. Much more power is deposited at the
equator than at regions near the poles. It is this inbalance
which is corrected using modal analysis in the next section
to yield the optimum vector wave solution to the power
deposition problem.
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Testing the large radius assumption for (8) with the
worst case, 433 MHz, where the maximum radius is ap-
proximately 0.9\, |kr| = 6.3 results in the neglected power
being only of the order of 0.04 at p = 0. For 915 MHz, this
error is only about 1 percent.

III. MODAL ANALYSIS

Solutions to the wave equation for spherical geometry
are harmonics of index n, represented by [9]:
N n(n+1
£ - 2 14,0, (1) o)
n=1 F
n

+éAn jn—l(kr)_ kr

)

1
X [ncos@P,(cosf)— nP"_l(COSO)](s_ir—lE) (10)
where P, is the Legendre polynomial of order », and 4, is
the constant of the nth harmonic. By setting N equal to 1,
A, = — jopRe /"R and recalling that Py(cosf)=1 and
P (cos8) = cos @, it is evident that (6) is the first harmonic
spherical wave solution.

It is the fundamental point of this analysis that for
higher order harmonics, n=2,3,4---, the E field at r =0
vanishes. Since j,(kr) varies as (kr)” for small r, these
spherical Bessel functions approach zero at the origin. This
property is used to reduce undesirably high power levels at
the surface of the sphere without affecting the power at the
origin. Specifically, a distribution can be synthesized from
these higher order modes with appropriately chosen phase
and amplitude to partially cancel the first-order mode field
at the surface, near the equator, and thereby increase the
maximum sphere size.

Once again, for large radius values, the § component of
the E field is the dominant contribution to the dissipated
power function. The § dependence of the nth mode of E,
can be expressed as

P (cosf)
Ea(0) ~ 05 5 (1)
Since for even-order n, P,(cosf) is an even function of
cos 8, its derivative will be an odd function of cos f, with a
total value of zero at § =x/2. The goal is to find the
harmonics with nonzero values at the equator to be
subtracted from the sin# dependence of the first harmonic.
Thus only odd-order harmonics are considered.

The derivatives of Legendre polynomials comprising the
first three odd harmonics are, from (11),

Ey ~ —sinf
5 .
Eyps~— ~2—cos fsinf + Esmﬁ
315 105 15
Egs~ ~ S cos*fcosf + e cos®fsinf — 5 sinf (12)

with values —1, 3/2, and —15/8 at § =7 /2.
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The three equations in (12) can be rewritten in terms of
sines of odd multiples of 8:

Eg ~ —sinf

15 3
E03~—?sin30——sm0
E il 56 % 36 ind. (13
05~ " g S50 — Jog sin36 — o sind. (13)

The sum of three harmonics may now be represented by
f(8) =sin6 + B,sin36 + B,sin56 (14)

where B; and B, are selected to minimize the maximum
value of power, ( f(6))?, over the domain 0 < § < 7. Solving
this transcendental formula interactively yields B, = 0.2365
and B, = 0.0640. The resulting surface power variation
has three equal peaks of 0.685 at 8 = 0.2947, 0.57, and
0.706 .

Note that a standard infinite Fourier series composed of
higher odd harmonics of the fundamental sin 8 can produce
a square pulse of height #/4, giving a power of 0.617.
However, for any finite sum of Fourier terms, there is
always a Gibbs phenomenon at the step edge increasing
the amplitude by a factor of about 1.09. This would
increase the maximum power to 0.733, which is greater
than the previously derived maximum.

What remains is the derivation of the actual mode
amplitudes and phases which multiply each harmonic so
that their sum equals f(#). Define J,=A4,[j,_ (kR)—
n/kRj (kR)] as the multiplicative constant of E, from
(10) for a given sphere radius R. Then using (14) and’the
three equations (13), the system

styeaf-2)ea -2

] 15 L] 105 3
=5 )5l 1) =

315
- 5)-m 09

is derived. The solution is J;=—0.9509, J,=-0.1148,
Js = —0.0260.

Although the third- and fifth-order modes do not
contribute to power at the origin of the sphere, the first-
order mode is slightly reduced in order to compensate for
the sinf terms in these higher modes. Thus the amplitude
in the center is reduced to —0.9509 of the uniform current
value. Renormalizing the coefficients to J/ =1, J/=
0.1207, J¢ =0.0288 compensates for this reduction. The
surface power is plotted in Fig. 4, along with the uniform
current power. The peak power level is reduced to 0.757 of
the single mode power. The magnitude of the ripple is
about + 1.5 percent. Addition of higher order terms would
reduce the ripple and lower the maximum surface power
slightly. The maximum improvement would be less than 2
percent, and since from Fig. 2 the increase in maximum
allowable radius varies approximately logarithmically with
power, the minute increase in radius does not justify the
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Fig. 5. Power pattern 1n a sphere of muscle tissue for approximate

uniform surface power distribution.

additional computational complexity required for seventh-
and higher order harmonics.

Finally, the coefficients 4, from (10) are determined
from the J, constants and the magnitudes and phases of
the spherical Bessel functions at the unity crossing points
of the power pattern for each frequency. Since the pattern
changes for each choice of the 4, set, this is an iterative
process. For 915 MHz, 4, =1.5¢/098®  4,=1.364
e/(28608 and A, =1.136¢/7%3619 determined at SR =

132, or R=945 cm.

The power patterns at 6 = 7/2 for the same frequencies
as before are plotted in Fig. 5. Note the increases in
maximum allowable radius, as indicated by the inter-
section points for the uniform current distribution, taken
from Fig. 2. For 100, 433, 915, and 2450 MHz, the
increases amount to 1.72, 0.84, 0.57, and 0.32 em, respec-
tively. -

From (10), it can be seen that for the large radius
dominant E, term, the radial and polar angle depen-
dencies are independent. Thus, the radial power behavior
always has the same shape as shown in Fig. 5 scaled by the
# dependence of Fig. 4 (with the exception of regions near



—_
(5
[ o)
[+

2.8

2450

1.5}

108 MH=

Power Normalized to Surface Power

o
-
=
-
n
-
=

) 2 4 3

Radius (Centimeters)
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the poles of the sphere, where the first-order terms vanish
and the second-order terms dominate).

The power profiles of Figs. 2 and 5 help determine the
maximum safely heated radii for a given frequency. Fig. 6
plots the same power curves normalized to the power on
the surface at a fixed radius of 9.5 cm. Note the superiority
of the 915 MHz curve both in penetration and resolution.

IV. CONCLUSIONS

The preceding discussion has determined the dimensions
of the largest convex volume of muscle tissue which can be
efficiently heated noninvasively. Constraints have been
imposed such that as much power is deposited in the
center as elsewhere in the volume or on its surface. These
limits are the theoretical best cases (within 1.5 percent): it
is not possible to improve on them by altering the surface
phase or amplitude distribution. For any other tissue
geometry, the maximum penetration depth from surface to
center will, of course, be lower. Although the deter-
mination of heating patterns depends on the thermal
characteristics of the tissue and is governed by the bio-heat
equation, it'is reasonable to assume that this solution is
also the best for heating the center without overheating
any intervening tissue. Heating pattern improvements are
possible by making use of surface cooling, but this effect is
limited to a few millimeters at most.

The novel aspect of this problem is consideration of the
vector nature of the source. For scalar waves, such as
acoustic waves, the uniform surface excitation would be
optimal. For electromagnetic waves, however, polarization
is an essential consideration. The method of adding addi-
tional higher order modes, which do not contribute to
power in the center, to the uniform current distribution
simultaneously provides for adjustments to amplitude,
phase, and polarization of the source.

Although penetration depth increases with decreasing
frequency below 433 MHz., the resolution of the focal spot
at the center decreases. However, due to the nonlinear
dependence of complex dielectric constant on frequency,
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increasing the frequency does vyield an increase in
penetration depth for a limited range, as shown by the plot
of 915 MHz power curves. For 433 MHz « /8 = 0.396,
whereas for 915 MHz it is 0.231, so the attenuation rate
per wavelength is greater for the lower frequency. There is
a small advantage to using a more uniform power surface
distribution than the uniform current distribution. The
improvements are more pronounced for the lower
frequencies, since wavelengths are longer and the slopes of
the power curves are shallower. It is clear that for muscle
tissue geometries of less than 9.5 cm radius, 915 MHz is
the best standard frequency for producing a well- focused
hlgh -resolution power peak.
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