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Optimal Source Distribution for Hyperthermia
at the Center of a Sphere of Muscle Tissue

CAREY M. RAPPAPORT, MEMBER, IEEE, AND FREDERIC R. MORGENTHALER, FELLOW, IEEE

,4b.$trzrct — In noninvasive electromagnetic hyperthermia it is important

that applicators deposit as least as much power at the tamer as anywhere

else in the intervening tissue. This study determines the ideal penetration

limits for heating the center of a volume of muscle tissue according to this

constraint. First, it is shown that the most efficiently heated volume is a

sphere. Then, using both a diffraction integral formulation and a spherical

harmonic modal approach, field dktributions within the sphere are derived.

It is sho+nr that combining odd harmonics can generate a nearly uniform

surface power distribution, and that thk dMribution is optimal. The power

deposition patterns for these distributions for various standard frequencies

are presented. It is concluded that 915 MHz is the best frequency for

heating spheres less than 9.5 cm in radius.

1. INTRODUCTION

T HE USE OF microwaves to induce hyperthermia by

depositing power within biological tissue is an effec-

tive means of treating cancer [1]–[3]. Applied noninva-

sively, microwave radiation is relatively safe and control-

lable, and may be synergistically combined with ionizing

radiation or chemotherapy.

It is important to know the penetration depth limits

which produce local power maxima. For treatment which

provides heat at depth at the site of a localized, solid

tumor, overheating normal intervening tissue must be

avoided. The greatest depth for which power can be safely

deposited occurs in a spherical volume of tissue. Also, with

proper focusing, this penetration depth represents a

fundamental heating limit.

In contrast to several previously reported studies, the

current examination considers the synthesis of the particu-

lar best distribution. A large amount of work has been

done analyzing the power pattern in a sphere illuminated

by a plane wave [4]-[6]. For this scattering problem, the

deposition pattern is unsymmetrical, since power is inci-

dent from only one side. Placing sources on all sides—in

ef feet surrounding the sphere with sources—makes use of

the entire apperture and therefore provides the greatest

constructive interference at the center. The symmetric

distribution synthesized has a much greater focal-point-
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to-surface distance than the plane wave pattern. The

optimal synthesis problem, though conceptually more

complex, is less computationally difficult than the plane

wave scattering analysis, which is usually solved using

numerical approximations. Since the former specifies a

source polarization, phase, and amplitude distribution on

the sphere surface, it is not easily analyzed using ray paths

or wavefronts. However, since the solution is ultimately

determined in terms of spherical harmonics, it is specified

in closed form.

There are relatively few biological structures which can

be modeled by the spherical geometry. The head (with

adequate eye protection) and the breast, making use of the

higher conductivity muscle “ground plane” backing layer,

are possible candidates. Despite the limited applications,

however, knowledge of the absolute maximum heating

depth provides a rule of thumb which specific microwave

applicator designs might strive to approach, but never

exceed.

II. LossY SPHEREFIELD SOLUTIONS

Since attenuation in dissipative media is roughly

exponential with depth, the volume geometry most suitable

for maximum constructive interference is one which

minimizes the distance from a focal point to the source on

its surface. By this criterion a sphere is optimum, since any

other volume can always be inscribed by a sphere. Thus,

given the minimum focal-point-to-surface distance R, and

the maximum tolerable surface power, a sphere of radius

R will yield the greatest power maximum at that focal

point, the origin.

The polarization of the source on the surface of the

sphere is an important criterion. As shown in Fig. 1, it

must be parallel to some axis, say the z axis. By symmetry,

these z-directed source components are independent of

circulating angle (+), and have polar angle (O) dependence
which is symmetriG about the equator (@= T/2). Any

additional radially symmetric (r) polarization component

cancels itself at the center, whereas any circulating compo-

nent vanishes there, and any additional polar angle com-

ponent can be decomposed into a radial component and a

z-directed component. If possible, a source design should

maintain polarization parallel to the z axis.

Specifying the optimal phases and amplitudes of these

source components is the next step in this derivation.

Contrary to established intuition, the best focused source
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Fig. 1. Currents polarized in the z direction on the surface of a sphere,
and the resulting maximum constructive interference of electric field at
the center.

distribution is not uniform amplitude and phase, as it

would be for an acoustic compression wave. To examine

the deficiencies of this uniform distribute on, we first solve

the surface current diffraction integral, and then improve

this solution using a modal analysis to yield the clptimum

distribution.

The uniform z-polarized surface current at a radius R is

represented as J( r‘ ) =’8( r – R)?., where 8 is the spatial

impulse function. This current is inserted in the dyadic

Green’s function diffraction formula [7]

‘=-4;++)”’’’”(1)

(2)

where the left-hand side of (1) is the vectcm electric field at

the observer point C, A (r) is the vector potential, t~ is the

radian frequency, 7 is the dyadic identity, k = ~ – ja is

the complex wavenumber, and Ir – r’1 is the observer-to-

integration-point distance. The law of cosines is used to

represent Ir – r’[, where r is assumed to lie on the z axis.

This alignment assumption is justified since the source is

uniform and symmetric and the only requirement on

polarization is that it be parallel to any arbitrary axis. That

is, the vector potential A is independent of observer coor-

dinates 9 and @ As would be the case with a scalar wave,

A represents a family of concentric, spherical equipoten-

tials. The source polarization enters only as a linear multi-

plier to this scalar function. The integral in (2) becomes a

surface integral:

~–]k~+ r2 –2i-Rcost7(

A (r) = p~”d8’J2”d+’R2 sin$’ -2
0 0 4vfir2-2rR cos9’

(3)

which is readily integrated, giving

()RA=?! —“ (e-Jk’R+’l - CJ’’IR-’I).
2 - jkr

(4)

Inside the sphere, r <R, the vector potential can be

represented by a spherical Bessel function:

sin kr
A(r) =@ Re-JkR-

kr

=@ Re-ikRjO(kr). (5)

It is at this point that the vector nature of the electromag-

netic field presents itself. Substituting this expression back

into (l.) and taking derivatives in cylindrical coordinates

(p, O, 2) gives

([()(
2

E(z, p) = – jgpRe-jkR t E jo(kr)-’~)

r

.(y(2J+)]

( )[

-jo(kr)+~J~
+P; , 1}

(6)

with r= fi~.
Several features of (6) are worth mentioning. First, there

is the addition of the # componeqt, and the 2 component

has three terms instead of just one (as might be expected

for a, scalar field). Second, for small values of radius, since

jo(kr) -1 and jl(kr) - kr/3, the electric field reduces to
simply

E(z, p)= –i?japRe-JkR(~)

z~(– j~)qk&-JkR. (7)

Next, for large values of radius Ij,,(kr)l - Isin(kr + ~)/krl,
so (6) becomes

E(z, p)
‘-j~kRe-’kR’o(kr):(’: -~:)o ‘8)

Note that in (8) there is an appreciable EP component

away from the equator. Thus even though the surface

currents are polarized parallel to the z axis, it is recognized

that the resulting E field for large radii is primarily

polarized in the O direction.

The dissipated power in a medium of conductivity u is

;IE12. IFrom (8), this is seen to be

P(z, r)= $lkR]2e-2aRljo( kr)]2(~)2 (9)

which is maximized at z = O, p = r, at the equator. The

exact power deposition function, based on (6) normalized

to the power at the origin, is plotted as a-function of radius

at z = O in Fig. 2 for several standard microwave

hyperthermia frequencies [8]. It is the intersection of each

curve with unity which determines the maximum allowable

sphere radius, As would be expected, the lowest frequency
curve has a greater penetration depth, due to its larger

physical wavelength, whereas the higher frequency patterns

have much greater resolution, with a rather narrow peak at

the origin for 2450 MHz. An interesting anomaly exists for

915 MHz, where the penetration depth is actually greater

than 433 MHz. This is due to the more prominent
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Fig, 2 Iksipated power in a sphere of muscle tissue as a function of
radius at d = 7r/2 for four standard hyperthermia frequencies: umform

current distribution
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Fig. 3. Power contours within a sphere of muscle tissue illuminated
v,,i th a uniform phase and amplitude, vertically polarized current source.

constructive and destructive phase effects for the higher

frequency.

Fig. 3 schematically represents the power contours within

the sphere. The profile of Fig. 2 is plotted along the

horizontal radial line from the center.

For a given (large) radius, (9) shows that the power

varies as sin2 (3. This is the same angular dependence as the

far-field power flow of a Hertzian dipole, resulting from

the sin 6 factor in the transverse component of the E field

and the H field. Much more power is deposited at the

equator than at regions near the poles. It is this inbalance

which is corrected using modal analysis in the next section

to yield the optimum vector wave solution to the power

deposition problem.

Testing the large radius assumption for (8) with the

worst case, 433 MHz, where the maximum radius is ap-

proximately 0.9A, Ikrl = 6.3 results in the neglected power

being only of the order of 0.04 at p = O. For 915 MHz, this

error is only about 1 percent.

III. MODAL ANALYSIS

Solutions to the wave equation for spherical geometry

are harmonics of index n, represented by [9]:

n(n +1)
E(r) = f M,, ~r jn(lcr)Pn(cos (3)

1?=1

[
+(14,, j,, -l(h)- ~~n(kr)

1

()x [rrcoseP,l(cos e)-nF’H_l(cose)] & (lo)

where P,, is the Legendre polynomial of order n, and A ~ is

the constant of the n th harmonic. By setting N equal to 1,

A ~= – jtipRe-JhR, and recalling that PO(COS13) =1 and

Pl(cos 6’) = cos 0, it is evident that (6) is the first harmonic

spherical wave solution.

It is the fundamental point of this analysis that for

higher order harmonics, n =2,3,4. . . . the E field at r = O

vanishes. Since j.(kr) varies as (kr)” for small r, these

spherical Bessel functions approach zero at the origin. This

property is used to reduce undesirably high power levels at

the surface of the sphere without affecting the power at the

origin. Specifically, a distribution can be synthesized from

these higher order modes with appropriately chosen phase

and amplitude to partially cancel the first-order mode field

at the surface, near the equator, and thereby increase the

maximum sphere size.

Once again, for large radius values, the O component of

the E field is the dominant contribution to the dissipated

power function. The O dependence of the nth mode of Efl
can be expressed as

(11)

Since for even-order n, P.(cos 6) is an even function of

cos 0, its derivative will be an odd function of cos 8, with a

total value of zero at 13= T/2. The goal is to find the

harmonics with nonzero values at the equator to be

subtracted from the sin 0 dependence of the first harmonic.
Thus only odd-order harmonics are considered.

The derivatives of Legendre polynomials comprising the

first three odd harmonics are, from (11),

EO1- – sine

15 3
E03-–7cos28 sin6+~sin0

315 105
E——85-—

8
co/ecose+ ~ cos26 sinf3 – ~ sinf3 (12)

with values – 1, 3/2, and – 15/8 at 6’ = 7r/2.
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The three equations in (12) can be rewritten in terms of

sines of odd multiples of 6:

Efll - – sine

15 3
E63-– —sin3fl–-sin0

8 8

315 105 30
E e5-— — sin5f3 –

128
— sin38 –
128

— sin%. (13)
128

The sum of three harmonics may now be represented by

~(fl)=sinf3 +Blsin30+B, sin56 (14)

where BI and BJ are selected to minimize the maximum

value of power, (~(0)) 2, over the domain O < d < n. Solving

this transcendental formula interactively yields BI ❑= 0.2365

and Bz = 0.0640. The resulting surface power variation

has three equal peaks of 0.685 at 8 = 0’.2947, 0.51r, and

0,706 v.

Note that a standard infinite Fourier series composed of

higher odd harmonics of the fundamental sin 6 can produce

a square pulse of height r/4, giving a power of 0.617.

However, for any finite sum of Fourier terms, there is

always a Gibbs phenomenon at the step edge increasing

the amplitude by a factor of about 1..09. This would

increase the maximum power to 0.733, which is greater

than the previously derived maximum.

What remains is the derivation of the actuad mode

amplitudes and phases which multiply each harmonic so

that their sum equals ~(0). Define J. = An[jn _ ~(klt) –

n /kRjn (kl? )] as the multiplicative constant of & from
(10) for a given sphere radius R. Then using (14) and ‘the

three equations (13), the system

‘J++JH+J4-%J=l
‘3(-a+JHa=Bl

315

()
J5 –—

128
= Bz (15)

is derived. The solution is J1 = – 0.9509, J, = – 0.1148,

J~ = – 0.0260.

Although the third- and fifth-order modes do not

contribute to power at the origin of the sphere,, the first-

order mode is slightly reduced in order to compensate for

the sin O terms in these higher modes. Thus the amplitude

in the center is reduced to – 0.9509 of the uniform current

value. Renormalizing the coefficients to J{ =1, J3’ =
0.1207, J,’ = 0.0288 compensates for this reduction. The

surface power is plotted in Fig. 4, along with the uniform

current power. The peak power level is reduced to 0.757 of

the single mode power. The magnitude of the ripple is

about + 1.5 percent. Addition of higher order terms would
reduce the ripple and lower the maximum surface power

slightly. The maximum improvement would be less than 2

percent, and since from Fig. 2 the increase in maximum

allowable radius varies approximately logarithmically with

power, the minute increase in radius does not justify the

Polar Angle (Multiples of Pi)

Fig 4. Surface power as a function of 8 for single mode (undorrn

cu rrcn t), and three mode (approximate uniform power) distributions,
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Fig. 5, Power pattern m a sphere of muscle tissue

uniform surface power distribution.

12 14

for approximate

additional computational complexity required for seventh-

and higher order harmonics.

Finally, the coefficients A. from (10) are determined

from the J; constants and the magnitudes and phases of

the spherical Bessel functions at the unity crossing points

of the power pattern for each frequency. Since the pattern

changes for each choice of the A. set, this is an iterative

process. For 915 MHz, Al = 1.5eJ(0c3c8), AZ = 1.364

e /(-2’8608), and ,43 = 1.136 eJ(-0-3b18), determined at ~R =

13.2, or R = 9.45 cm.

The lpower patterns at 6 = T/2 for the same frequencies

as before are plotted in Fig. 5. Note the increases in

maximum allowable radius, as indicated by the inter-

section points for the uniform current distribution, taken

from Fig. 2. For 100, 433, 915, and 2450 MHz, the

increases amount to 1.72, 0.84, 0.57, and 0.32 cm, respec-
tively.

From (10), it can be seen that for the large radius

dominant E@ term, the radial and polar angle depen-

dencies are independent. Thus, the radial power behavior

always has the same shape as shown in Fig. 5 scaled by the

O dependence of Fig. 4 (with the exception of regions near
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Fig. 6. Power pattern for a 9,5 cm radius sphere of muscle tissue,
normalized to the power at the surface.

the poles of the sphere, where the first-order terms vanish

and the second-order terms dominate).

The power profiles of Figs. 2 and 5 help determine the

maximum safely heated radii for a given frequency. Fig. 6

plots the same power curves normalized to the power on

the surface at a fixed radius of 9.5 cm. Note the superiority

of the 915 MHz curve both in penetration and resolution.

IV. CONCLUSIONS

The preceding discussion has determined the dimensions

of the largest convex volume of muscle tissue which can be

efficiently heated noninvasively. Constraints have been

imposed such that as much power is deposited in the

center as elsewhere in the volume or on its surface. These

limits are the theoretical best cases (within 1.5 percent): it

is not possible to improve on them by altering the surface

phase or amplitude distribution. For any other tissue

geometry, the maximum penetration depth from surface to

center will, of course, be lower. Although the deter-

mination of heating patterns depends on the thermal

characteristics of the tissue and is governed by the bio-heat

equation, it is reasonable to assume that this solution is

also the best for heating the center without overheating

any intervening tissue. Heating pattern improvements are

possible by making use of surface cooling, but this effect is

limited to a few millimeters at most.

The novel aspect of this problem is consideration of the
vector nature of the source. For scalar waves, such as

acoustic waves, the uniform surface excitation would be

optimal. For electromagnetic waves, however, polarization

is an essential consideration. The method of adding addi-

tional higher order modes, which do not contribute to

power in the center, to the uniform current distribution

simultaneously provides for adjustments to amplitude,

phase, and polarization of the source.

Although penetration depth increases with decreasing

frequency below 433 MHz., the resolution of the focal spot

at the center decreases. However, due to the nonlinear

dependence of complex dielectric constant on frequency,

increasing the frequency does yield an increase in

penetration depth for a limited range, as shown by the plot

of 915 MHz power curves. For 433 MHz a/fl = 0.396,

whereas for 915 MHz it is 0.231, so the attenuation rate

per wavelength is greater for the lower frequency. There is

a small advantage to using a more uniform power surface

distribution than the uniform current distribution. The

improvements are more pronounced for the lower

frequencies, since wavelengths are longer and the slopes of

the power curves are shallower. It is clear that for muscle

tissue geometries of less than 9.5 cm radius, 915 MHz is

the best standard frequency for producing a well-focused,

high-resolution power peak.
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